417 research outputs found

    Formation of S0 galaxies through mergers. Evolution in the Tully-Fisher relation since z1z\sim1

    Full text link
    (Abridged version) We explore whether a scenario that combines an origin by mergers at zz\sim1.8-1.5 with a subsequent passive evolution of the resulting S0 remnants since zz \sim0.8-1 is compatible with observational data of S0s in the Tully-Fisher relation (TFR). We studied a set of major and minor merger experiments from the GalMer database that generate massive S0 remnants. We analysed the location of these remnants in the photometric and stellar TFRs assuming that they correspond to z0.8z\sim0.8 galaxies. We then estimated their evolution in these planes over the last 7 Gyr. The results were compared with data of real S0s and spirals at different redshifts. We also tested how the use of Vcirc or Vrot,max affects the results. We found that just after \sim1-2 Gyr of coalescence, major mergers generate S0 remnants that are outliers of the local photometric and stellar TFRs at z0.8z\sim0.8. After \sim4-7 Gyr of passive evolution in isolation, the S0 remnants move towards the local TFR, although the initial scatter among them persists. This scatter is sensitive to the indicator used for the rotation velocity: Vcirc values yield a lower scatter than when Vrot,max values are considered instead. In the planes involving Vrot,max, a clear segregation of the S0 remnants in terms of the spin-orbit coupling of the model is observed, in which the remnants of retrograde encounters overlap with local S0s hosting counter-rotating discs. The location of the S0 remnants at z0z\sim 0 agrees well with the observed distribution of local S0 galaxies in the σ0\sigma_0-MKM_K, Vcirc-σ0\sigma_0 and Vrot,max-σ0\sigma_0 planes. Thus, massive S0 galaxies may have been formed through major mergers that occurred at high redshift and have later evolved towards the local TFR through passive evolution in relative isolation, a mechanism that would also contribute to the scatter observed in this relation.Comment: 19 pages, 15 figures. Accepted for publication in A&

    Formation of S0 galaxies through mergers. Bulge-disc structural coupling resulting from major mergers

    Get PDF
    Observations reveal a strong structural coupling between bulge and disc in S0 galaxies, which seems difficult to explain if they have formed from supposedly catastrophic events such as major mergers. We face this question by quantifying the bulge-disc coupling in dissipative simulations of major and minor mergers that result in realistic S0s. We have studied the dissipative N-body binary merger simulations from the GalMer database that give rise to realistic, relaxed E/S0 and S0 remnants (67 major and 29 minor mergers). We simulate surface brightness profiles of these S0-like remnants in the K-band, mimicking typical observational conditions, to perform bulge-disc decompositions analogous to those carried out in real S0s. The global bulge-disc structure of these remnants has been compared with real data, and they distribute in the B/T - r_e - h_d parameter space consistently with real bright S0s, where B/T is the bulge-to-total luminosity ratio, r_e is the bulge effective radius, and h_d is the disc scalelength. Major mergers can rebuild a bulge-disc coupling in the remnants after having destroyed the structures of the progenitors, whereas minor mergers directly preserve them. Remnants exhibit B/T and r_e/h_d spanning a wide range of values, and their distribution is consistent with observations. Many remnants have bulge Sersic indices ranging 1<n<2, flat appearance, and contain residual star formation in embedded discs, a result which agrees with the presence of pseudobulges in real S0s. Contrary to the popular view, mergers (and in particular, major events) can result in S0 remnants with realistically coupled bulge-disc structures in less than ~3 Gyr. In conclusion, the bulge-disc coupling and the presence of pseudobulges in real S0s cannot be used as an argument against the possible major-merger origin of these galaxies.Comment: 23 pages, accepted for publication in Astronomy and Astrophysics (version after minor language corrections

    Formation of S0 galaxies through mergers. Morphological properties: tidal relics, lenses, ovals, and other inner components

    Get PDF
    Major mergers are popularly considered too destructive to produce the relaxed regular structures and the morphological inner components (ICs) usually observed in lenticular (S0) galaxies. We aim to test if major mergers can produce remnants with realistic S0 morphologies. We have selected a sample of relaxed discy remnants resulting from the dissipative merger simulations of the GalMer database and derived their properties mimicking the typical conditions of current observational data. We compare their global morphologies, visual components, and merger relics in mock photometric images with their real counterparts. Only \sim1-2 Gyr after the full merger, we find that: 1) many remnants (67 major and 29 minor events) present relaxed structures and typical S0 or E/S0 morphologies, for a wide variety of orbits and even in gas-poor cases. 2) Contrary to popular expectations, most of them do not exhibit any morphological traces of their past merger origin under typical observing conditions and at distances as nearby as 30 Mpc. 3) The merger relics are more persistent in minor mergers than in major ones for similar relaxing time periods. 4) No major-merger S0-like remnant develops a significant bar. 5) Nearly 58% of the major-merger S0 remnants host visually detectable ICs, such as embedded inner discs, rings, pseudo-rings, inner spirals, nuclear bars, and compact sources, very frequent in real S0s too. 6) All remnants contain a lens or oval, identically ubiquitous in local S0s. 7) These lenses and ovals do not come from bar dilution in major merger cases, but are associated with stellar halos or embedded inner discs instead (thick or thin). We conclude that the relaxed morphologies, lenses, ovals, and other ICs of real S0s do not necessarily come from internal secular evolution, gas infall or environmental mechanisms, as traditionally assumed, but they can result from major mergers as well.Comment: Accepted for publication in A&A, 37 pages, 21 figures, 9 tables. Version with better resolution and language edited. A version with full Appendices is available at: https://www.researchgate.net/publication/325905181_Formation_of_S0_galaxies_through_mergers_Morphological_properties_tidal_relics_lenses_ovals_and_other_inner_components_-_Version_of_the_corresponding_AA_paper_with_full_Appendice

    Creating lenticular galaxies with major mergers

    Get PDF
    Lenticular galaxies (S0s) represent the majority of early-type galaxies in the local Universe, but their formation channels are still poorly understood. While galaxy mergers are obvious pathways to suppress star formation and increase bulge sizes, the marked parallelism between spiral and lenticular galaxies (e.g. photometric bulge-disc coupling) seemed to rule out a potential merger origin. Here, we summarise our recent work in which we have shown, through N-body numerical simulations, that disc-dominated lenticulars can emerge from major mergers of spiral galaxies, in good agreement with observational photometric scaling relations. Moreover, we show that mergers simultaneously increase the light concentration and reduce the angular momentum relative to their spiral progenitors. This explains the mismatch in angular momentum and concentration between spirals and lenticulars recently revealed by CALIFA observations, which is hard to reconcile with simple fading mechanisms (e.g. ram-pressure stripping)

    Evolution induced by dry minor mergers onto fast-rotator S0 galaxies

    Get PDF
    We analysed collisionless N-body simulations of intermediate and minor dry mergers onto S0s to test whether these mergers can generate S0 galaxies with kinematics intermediate between fast and slow rotators. We find that minor mergers induce a lower decrease of the global rotational support than encounters of lower mass ratios, which results in S0s with properties intermediate between fast and slow rotators. The resulting remnants are intrinsically more triaxial, less flattened, and span the whole range of apparent ellipticities up to ϵe0.8\epsilon_\mathrm{e} \sim 0.8. They do not show lower apparent ellipticities in random projections than initially; on the contrary, the formation of oval distortions and the disc thickening increase the percentage of projections at 0.4<ϵe<0.70.4 < \epsilon_\mathrm{e} < 0.7. In the experiments with S0b progenitor galaxies, minor mergers tend to spin up the bulge and to decrease slightly its intrinsic ellipticity, whereas in the cases of primary S0c galaxies they keep the rotational support of the bulge nearly constant and decrease significantly its intrinsic ellipticity. The remnant bulges remain nearly spherical (B/AC/A>0.9B/A \sim C/A > 0.9), but exhibit a wide range of triaxialities (0.20<T<1.000.20 < T < 1.00). In the plane of global anisotropy of velocities (δ\delta) vs. intrinsic ellipticity (ϵe,intr\epsilon_\mathrm{e,intr}), some of our models extend the linear trend found in previous major merger simulations towards higher ϵe,intr\epsilon_\mathrm{e,intr} values, while others depart from it. This is consistent with the wide dispersion exhibited by real S0s in this diagram compared with ellipticals, which follow the linear trend drawn by major merger simulations. The different trends exhibited by ellipticals and S0 galaxies in the δ\delta - ϵe\epsilon_\mathrm{e} diagram may be pointing to the different role played by major mergers in the build-up of each morphological type.Comment: Corrected typos. 20 pages, 14 figures. Accepted for publishing in A&

    Screening of Indigenous Microorganisms as Potential Biofertilisers for Periurban Horticulture Areas

    Get PDF
    In Buenos Aires periurban area, horticultural practices are one of the most important activities. Pesticides and fertilisers are used without any control to cover the farmers’ needs, obtaining high crop yields at short terms and modifying soil ecosystem in the long term. The aim of this work was to isolate indigenous strains from periurban horticultural units with pesticide degrading capacity and to evaluate their plant growth-promoting properties in order to design biofertilisers to be applied in the restoration of these exploited soils. After the screening, eight strains were isolated and identified. They showed not only the capacity to produce indole-3- acetic acid, to fix nitrogen, to secrete siderophores and to solubilise calcium phosphate but also tolerated the mixture of pesticides usually used for horticultural practices. By their behaviour in mixed cultures and plant growth-promoting properties, these autochthonous isolates represent a promising alternative as biofertilisers according to soil type and activity

    Plant’s gypsum affinity shapes responses to specific edaphic constraints without limiting responses to other general constraints

    Get PDF
    Aims: Harsh edaphic environments harbor species with different soil affinities. Plant’s responses to specific edaphic constraints may be compromised against responses to prevalent stresses shared with other semi-arid environments. We expect that species with high edaphic affinity may show traits to overcome harsh soil properties, while species with low affinity may respond to environmental constraints shared with arid environments. Methods: We quantified the edaphic affinity of 12 plant species co-occurring in gypsum outcrops and measured traits related to plant responses to specific gypsum constraints (rooting and water uptake depth, foliar accumulation of Ca, S and Mg), and traits related to common constraints of arid environments (water use efficiency, macronutrients foliar content). Results: Plants in gypsum outcrops differed in their strategies to face edaphic limitations. A phylogenetic informed PCA segregated species based on their foliar Ca and S accumulation and greater water uptake depths, associated with plant responses to specific gypsum limitations. Species’ gypsum affinity explained this segregation, but traits related to water or nutrient use efficiency did not contribute substantially to this axis. Conclusions: Plant’s specializations to respond to specific edaphic constraints of gypsum soils do not limit their ability to deal with other non-specific environmental constraints

    A Portrait of Cold Gas in Galaxies at 60pc Resolution and a Simple Method to Test Hypotheses That Link Small-Scale ISM Structure to Galaxy-Scale Processes

    Get PDF
    The cloud-scale density, velocity dispersion, and gravitational boundedness of the interstellar medium (ISM) vary within and among galaxies. In turbulent models, these properties play key roles in the ability of gas to form stars. New high fidelity, high resolution surveys offer the prospect to measure these quantities across galaxies. We present a simple approach to make such measurements and to test hypotheses that link small-scale gas structure to star formation and galactic environment. Our calculations capture the key physics of the Larson scaling relations, and we show good correspondence between our approach and a traditional "cloud properties" treatment. However, we argue that our method is preferable in many cases because of its simple, reproducible characterization of all emission. Using, low-J 12CO data from recent surveys, we characterize the molecular ISM at 60pc resolution in the Antennae, the Large Magellanic Cloud, M31, M33, M51, and M74. We report the distributions of surface density, velocity dispersion, and gravitational boundedness at 60pc scales and show galaxy-to-galaxy and intra-galaxy variations in each. The distribution of flux as a function of surface density appears roughly lognormal with a 1sigma width of ~0.3 dex, though the center of this distribution varies from galaxy to galaxy. The 60pc resolution line width and molecular gas surface density correlate well, which is a fundamental behavior expected for virialized or free-falling gas. Varying the measurement scale for the LMC and M31, we show that the molecular ISM has higher surface densities, lower line widths, and more self-gravity at smaller scales.Comment: Accepted for publication in the Astrophysical Journal, 36 pages (24+appendix), 21 figures (12+appendix), until publication high resolution version at http://www.astronomy.ohio-state.edu/~leroy.42/cloudscale.pd
    corecore